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Abstract

Geographical data plays an important role on the Web:
recent search engine statistics regularly confirm that
a growing number of search queries have a locale con-
text or contain terms referring to locations. Assessing
geographical relevance for Web pages and text docu-
ments requires information extraction techniques for
recognizing and disambiguating geographical entities
from unstructured text. We present a new corpus for
evaluation purposes, which we make publicly available
for research, describe two approaches for extracting
geographical entities from English text—one based
on heuristics, the other relying on machine learning
techniques—and perform an extensive discussion of
those two approaches. Furthermore, we compare our
approach to other publicly available location extrac-
tion services. Our results show, that the presented
approaches outperform current state of the art sys-
tems.

Keywords: Toponym Resolution, Toponym Recogni-
tion, Toponym Disambiguation, Machine Learning,
Feature Mining, Dataset

1 Introduction

According to recent statistics, between 30 and 40 % of
the users’ queries at Google are now related to phys-
ical places (Parsons 2012). Therefore, correctly rec-
ognizing and extracting geographic information from
unstructured text can be considered a crucial step for
offering more appropriate answers to users’ informa-
tion needs. Domains where geographic information
plays an important role are, for example, the daily
news; methods for searching and organizing news arti-
cles can greatly benefit from place information, as it
is one of the fundamental parts of the Five Ws (Who,
What, When, Where, Why) employed in journalism
to describe events. As a further example, consider
advertising: In Geotargeting, geographic information
extracted from available data can be used to deliver
more individual and context relevant content to the
user.

The roots of geographical information extraction
lie in Named Entity Recognition (NER) as it was de-
fined by the Message Understanding Conference 6 in
1996 (Grishman & Sundheim 1996). However, general
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NER usually neglects spatial properties in favor of
recognizing a broad range of different entity types
(e. g. in MUC-6, the types “Organization”, “Person”,
“Location”, “Date”, “Time”, “Money”, “Percent” were
used). Later, dedicated approaches focussed explicitly
on extracting geographic data from text and asso-
ciating extracted location references with models of
the real world by providing spatial and/or topological
properties such as coordinates or administrative/part-
of relations.

The task of extracting geographical information
from text can be divided into the following three dis-
ciplines: Toponym Recognition (TR), Toponym Dis-
ambiguation1 (TD) and Scope Resolution (SR). TR
identifies and marks occurring toponyms in a text
and is therefore closely related to NER. A central
challenge lies in the so called “geo/non-geo ambigu-
ity” (Amitay et al. 2004). Considering the sentence
“Mary is in Turkmenistan.”, it is unclear without fur-
ther background information, whether “Mary” refers
to a person or to the city which is located in the
south east of the country. The process of TD asso-
ciates identified toponyms with entries in a database
serving as a so called gazetteer. Here, we face the
problem of the “geo/geo ambiguity” (Amitay et al.
2004). Consider the sentence “San Antonio is a place
in California.”. While looking up the term “San An-
tonio” in a gazetteer would yield matches all over the
world, using the determiner “California” as filter, the
number of potential places can be greatly reduced,
although there are still multiple places called “San
Antonio” in California.

SR on the other hand identifies a spatial scope for
a document as a whole, summarizing all geographical
evidence to one appropriate abstraction. While the
presented approach can be further used as foundation
for SR, the focus of this work is TR and TD.

During our research, we found that existing
datasets for geographic information extraction are
usually not publicly available, limiting the possibili-
ties to compare different approaches with each other.
Thus, the first contribution of this work is a novel
dataset with NER-style type annotations for loca-
tions and associated geo coordinates, which we make
freely available for research purposes on the research
platform Areca. The creation and properties of this
dataset, called “TUD-Loc-2013” hereupon, will be
described in detail in Section 3. As a second contri-
bution, we present two new approaches for combined
TR and TD: A heuristic approach relying on several
rules which will be described in Section 4.2, and an
approach using machine learning (ML) techniques,
based on a plethora of extracted features, which will
be discussed in detail in Section 4.3. To the current

1Others, such as Leidner (2006), Lieberman & Samet (2012)
refer to this task as “Toponym Resolving” or “Resolution”.



state of the art, none of the existing approaches as
presented in Section 2 has applied ML with such an
extensive feature set for this task. Section 5 presents
our gazetteer, which is aggregated from multiple freely
available location sources. In Section 6, we outline
our experiments for fine-tuning the approaches. In
particular, we review the features which serve as in-
put for the machine learning approach and determine,
which of them are actually valuable for the task. In
Section 7 we compare our approaches to other services
for extracting locations from unstructured text.

2 Related Work

This section describes related work for TR and TD.
General all-purpose NER approaches which perform
only TR, but do not associate recognized toponyms
to geographic representations are not considered here,
neither do we present approaches for SR such as An-
dogah (2010) or Wing & Baldridge (2011).

One of the first notable works in this area can be
attributed to Smith & Crane (2001), who did TR and
TD for a digital library with historical content. After
a rule-based identification and filtering of toponym
candidates, their approach calculates a centroid co-
ordinate for all location candidates and continuously
elmiminates those which are more than a specified
distance away from this centroid.

Li et al. (2002, 2003) build a weighted graph of all
location candidates in a text. The edge weights are de-
termined using a set of rules which rely on topological
properties between the represented locations beside
some intrinsic text metrics. Using Kruskal’s algorithm,
a Maximum Weight Spanning Tree is calculated from
which the final disambiguation is derived.

Rauch et al. (2003) describe a confidence-based
mechanism which, on the one hand relies on intrinsic
textual properties, such as the proximity between two
toponyms within the text and the actual geographic
proximities of their potential locations. On the other
hand, for locations with same names, higher confidence
values are assigned to those with larger population
figures.

Smith & Mann (2003) employ a Näıve Bayes clas-
sifier for a simplified TD task, where the aim is to
recover the correct U. S. state or country for a given
text. The classifier is trained using phrases from texts,
which disambiguate place names by giving explicit
cues, such as in “[. . . ] Nashville, Tennessee [. . . ]”, and
relies on text features (unfortunately, the work gives
no deeper information about the feature types they
use, e. g. n-grams, tokens, etc.). However, their results
yield in only minimal improvements over a baseline
which simply assumes the most frequently occurring
location.

Similar to Rauch et al. (2003), Amitay et al. (2004)
assign confidence values to locations based on some
heuristics. Additionally, they address the problem of
geo/non-geo ambiguities with a large curated corpus of
over 1 million Web pages. Location names from their
gazetteer, which do not occur as proper nouns in the
corpus frequently, or where the number of mentions
in the corpus is strongly disproportional to the pop-
ulation of the place, are considered as non-locations,
unless explicit evidence is given in the text.

Leidner (2007) presents an algorithm for toponym
resolution using a spatial minimality assumption. Be-
sides the heuristic to resolve each toponym to a coun-
try, if such exists, and exploiting explicitly given dis-
ambiguations in text, a cross product is computed of
all locations for remaining unresolved toponyms. From
all potential combinations, each containing one poten-

tial location for the toponyms given in the text, the
combination which spans the smallest area is selected.

Da Graça Martins (2008) use a set of manually
created contextual rules for TR. Furthermore, an ex-
clusion list is used to remove common terms which are
not usually locations. The TD also makes use of the
context rules and further applies a set of heuristics
which exploit the topological relations between pairs
of potential locations.

Buscaldi & Rosso (2008) employ classical methods
for word-sense disambiguation and rely on WordNet
to recognize toponyms. They note the poor coverage
of WordNet in regards to geographical information
compared to classical gazetteers.

Lieberman & Samet (2012) are the first to evaluate
a machine learning-based TD approach. They present
seven features, two of which are extracted from a so
called “adaptive context”. The adaptive context is
characterized by a window breath and depth. The first
denotes a context of a specified number of toponyms
before and after the currently considered toponym,
while the depth limits the number of potential location
candidates to consider for each toponym. These two
figures are motivated by the requirement to allow for a
fast TD computation. Using labeled data, a classifier
is trained, which carries out a classification for each
potential location assignment to a toponym to be
either correct or incorrect.

While most of the aforementioned works rely on
heuristics, only the more recent approach of Lieberman
& Samet (2012) successfully takes up the idea of a
feature-based machine learning technique. However,
they rely on a comparatively small feature set and
only employ them for the TD phase. In this work,
in contrast, we are going present a comprehensive
set of different features, which we will then evaluate
for a machine learning-based, combined TR and TD
approach. In addition, we will draw a comparison
with our new heuristic-based method.

3 Datasets

Despite the growing attention of the research commu-
nity during the last years in toponym recognition, the
lack of publicly available datasets makes it difficult to
compare different approaches to each other. In the fol-
lowing, we will shortly give an overview over datasets
which have been employed in the past and outline
our motivations to create the novel, freely available
“TUD-Loc-2013” dataset.

3.1 Existing Datasets

“GeoSemCor”, as presented by Buscaldi & Rosso
(2008), is a freely available dataset, where Toponyms
have been annotated with WordNet senses. It contains
only annotations for the relatively popular toponyms
which exist in WordNet and has no geographical ref-
erents. The same applies to “CLIR-WSD”2.

“TR-ConLL”, which was presented in Leidner
(2006) is based on English news texts from the Reuters
CoNLL corpus. It contains 946 documents with 6,980
toponym instances, of which 1,299 are unique. The
dataset can be purchased from the author and costs
550 US$ for an academic license.

The “ACE 2005 English SpatialML Annotations”3

consists of 428 documents from a broad range of differ-
ent sources (news, blogs, newsgroups). The dataset is

2http://ixa2.si.ehu.es/clirwsd/
3http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?

catalogId=LDC2011T02
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not publicly available; non-members of the Linguistic
Data Consortium pay 500/1,000 US$.

The “Local-Global Lexicon” (LGL) corpus from
Lieberman et al. (2010) was obtained from 78 news-
papers with a mainly local focus, yielding in 588 doc-
uments. The sources were selected with an explicit
focus on ambiguities (for example, containing the cities
Paris in Texas, Tennesse, and Illinois). The dataset
therefore seems well suited for evaluating location ex-
traction in a local domain, but does obviously not
represent realistic properties. LGL is not publically
available, but the author kindly supplied us with the
corpus. During a thorough inspection, however, we
noticed several issues and inaccuracies concerning the
annotations: Plenty of locations in the dataset have
not been marked4 or for many annotations, more
specific locations exist5. Besides, demonyms and ad-
jectives are marked as locations. We have seen, that
these drawbacks favor extraction approaches with low
recall and penalize approaches with very fine-grained
toponym resolution. That is why we will not include
LGL in our evaluation given in Section 7.

“TR-CLEF” and “TR-RNW” are manually ano-
tated corpora used for evaluations in Andogah (2010).
They are not published however and we never received
a reply from the author to our inquiry.

3.2 TUD-Loc-2013

Motivated by our experiences as described in Sec-
tion 3.1, we will describe the creation of “TUD-Loc-
2013”; a novel dataset for evaluating TR and TD
approaches. The dataset described here is published
on the open research platform Areca6 to increase trans-
parency and to allow future research to be compared
on this publicly available dataset.

The dataset consists of 152 English text documents
retrieved from different URLs. An index file within the
dataset package gives the original URLs from which
the pages were obtained. We focused on content-
oriented pages such as news and blog articles, but
excluded start pages which combine multiple topics.
The main text content was manually extracted, re-
moving elements such as banners, navigation menus,
comments, headers, and footers.

Total Unique
Type # % # %

CONTINENT 72 1.89 6 0.43
COUNTRY 1,486 38.96 147 10.49
CITY 1,031 27.03 401 28.62
UNIT 242 6.35 131 9.35
REGION 139 3.64 83 5.92
LANDMARK 281 7.37 183 13.06
POI 454 11.90 355 25.34
STREET 55 1.44 45 3.21
STREETNR 37 0.97 33 2.36
ZIP 17 0.45 17 1.21

# All 3.814 1.401

Table 1: Counts of annotations in TUD-Loc-2013

We initially defined ten location types for annota-
tion as depicted in Table 1. We tried to make different

4In doc. 38765806 for example, 20 annotations are present in
the dataset, but we counted 44 toponyms.

5In doc. 38543488 for example, in the phrase “[. . . ] building
permit for the new Woodstock General Hospital [. . . ]”, the term
“Woodstock” is marked, but we feel that “Woodstock General Hos-
pital” is the more accurate location.

6http://areca.co/21/TUD-Loc-2013-location-extraction-and-
toponym-disambiguation-dataset

location types clearly distinguishable and wanted to
avoid a too broad type variety. While the first three
of the given types should be self-explanatory, we want
to stress the difference between UNIT and REGION; the
first refers to administrative entities, such as federal
states, counties or cities’ districts (e. g. “California”,
“Bavaria”, or “Manhattan”). The latter, REGION, on
the other hand is used to designate areas without
political or administrative meaning (e. g. “Midwest”).
While locations annotated as LANDMARK refer to geo-
graphic entities, such as rivers, lakes, valleys, or moun-
tains (e. g. “Rocky Mountains”), the type POI7 indi-
cates buildings (e. g. “Stanford University” or “Tahrir
Square”).

The annotation of the extracted texts was done
manually in XML style. This means, that relevant
parts of the text were surrounded by tags denoting
the appropriate types. Additionally, we allowed the
attribute role="main" once per document, indicat-
ing the document’s geographic scope (relevant for SR
tasks, see Section 1). The following paragraph shows
an example snippet from the dataset:

Tiny <LANDMARK>Heir Island</LANDMARK> -- one of the
many isles that are scattered across County
<CITY>Cork</CITY>’s <LANDMARK>Roaring Water
Bay</LANDMARK> in <COUNTRY
role="main">Ireland</COUNTRY>’s southwest -- is one
of the country’s go-to gourmet spots. So you will
need to book months in advance to dine at <POI>Island
Cottage</POI>, a restaurant run by the
husband-and-wife team John Desmond and Ellmary Fenton.
[...]

In a second step, annotations were associated with
actual locations. Through a dedicated Web-based
annotation app, we allowed to query GeoNames8 and—
as a fallback—the Google Geocoding API9 with the
annotations’ values. All results were displayed as
markers on a map, including additional properties
such as type, population, etc. and were then manually
selected. As not all values can be found directly, we
also provided the possibility to modify the queries
(e. g. the term “Atlantic” needs to be corrected to
“Atlantic Ocean” to give any results). Locations, which
could not be found could be marked as “non resolved”
explicitly. The result is a separate CSV file with
pointers to the annotated text files (filename, running
index and character offset of annotation), coordinates
and source-specific identifiers. The following lines give
an excerpt of the CSV file:

docId;idx;offset;latitude;longitude;sourceId
text1.txt;0;0;53.00000;-8.00000;geonames:2963597
text1.txt;1;28;53.00000;-8.00000;geonames:2963597
text1.txt;2;399;51.49475;-9.43960;google
text1.txt;3;469;51.96667;-8.58333;geonames:2965139
text1.txt;4;476;;;
text1.txt;5;497;53.00000;-8.00000;geonames:2963597
text1.txt;6;619;;;
text1.txt;7;755;51.51077;-9.42505;google [...]

From the given 3,814 annotations, 3,452 were man-
ually disambiguated (90.51 %). The remaining non-
disambiguated locations are mostly of type POI; here,
only 50,88 % of the annotations could be assigned
with coordinates. This is due to the fact, that the
dataset contains several little-known locations such
as restaurants, etc. which could not be found in the
considered databases. Figure 1 shows the distribution
of the disambiguated locations on a map.

7Point of Interest
8http://www.geonames.org
9https://developers.google.com/maps/documentation/

geocoding/
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Figure 1: Coordinate distribution in TUD-Loc-2013

The final dataset is split in the three disjoint sets
training (40 %), validation (20 %) and test (40 %).

4 Approaches

In the following Sections 4.2 and 4.3, our two strategies
for TR and TD are described. The common processing
steps to both of the strategies, which include candidate
extraction, filtering and preprocessing, are described
as follows.

4.1 Preprocessing

In contrast to various other approaches, which rely
heavily on a full-fledged preprocessing pipeline, includ-
ing PoS tagging, deep parsing or NER, we only use
very basic mechanisms for TR as described below. We
focus on correctly detecting entity candidates of all
types (i. e. also potential non-locations) and only filter
out those ones, where we can be sure that they do not
represent a toponym. Our assumption is, that wrongly
classified candidates can be better removed in the TD
phase, where we can apply more knowledge such as the
gazetteer and information about further candidates
in the document. All kinds of lingustic processing on
the other hand, especially NER, are strongly domain-
specific and introduce additional chances for errors
under suboptimal conditions.

Candidate extraction takes place using a rule-based
tagger, which marks sequences of capitalized expres-
sions in the text. Several exceptions are applied to
correctly annotate term spans containing lowercased
prepositions or special characters (such as in “United
States of America”, “Rue de Rivoli”, or “Grand Tra-
dition Estate & Gardens”). This approach guarantees
high recall and was successfully applied by Urbansky
(2012).

A problem which arises from the rule-based tag-
ging is that tokens at the beginning of sentences are
always considered as candidates because of their cap-
italization. Given the sentence “Tiny Heir Island is
one of the country’s go-to gourmet spots.”, our tagger
extracts the candidate “Tiny Heir Island”, although
“Tiny” represents an attribute for the actual location.
A pre-generated case dictionary is used to remove or
correct candidates at sentence beginnings. The idea
has been described by Millan et al. (2008). The case
dictionary10 consists of a list of tokens with their occur-
rence frequencies as uppercase and lowercase variant.
In case, a token occurs clearly more frequent in low-
ercase form, we remove it or correct the candidate’s

10We created our case dictionary from English Wikipedia articles,
consisting of approximately 91,000 tokens.

offset (so that in the given example, we would end up
with the correct form “Heir Island”).

Our experience shows, that many incorrectly ex-
tracted locations are actually person names. There-
fore, we remove sure-negative candidates, using a well
curated set of person-centric prefixes such as “Mr.”,
“Minister”, “Officer”, etc. in a first step. In a sec-
ond pass, we classify potentially negative candidates
using candidates’ text contexts. Contexts are sur-
rounding tokens before or after a candidate and give
clues about its type. For example, in the sentence
“Georgia attended the conference”, we can conclude
from the suffix “attended”, that the entity is most
likely a person, whereas in the case of “Georgia presi-
dent concedes election defeat”, the suffix “president”
gives a strong clue, that the preceding candidate is
a location. We have accumulated a massive amount
of location and person specific texts building on the
foundations as described in Urbansky (2012) to ex-
tract a corpus of characteristic contexts for both types.
For a list of 800 manually compiled seed entities for
each type “person” and “location”, we queried Bing11

and obtained at most 100 URLs per seed, yielding in
29,642 HTML pages for persons and 33,454 pages for
locations. We tried to extract the main content block
of each page using the Palladian toolkit (Urbansky
et al. 2012) and filtered texts under 100 characters
and short fragments within texts. The final context
dataset consists fo 126,377 person entities and 184,841
location entities. Contexts for persons serve as neg-
ative, contexts for locations as positive indicators to
build a context dictionary which we use for lookup
during classification. To avoid misclassifications and
thus decrease recall, the dictionary is created using a
very conservative strategy: Only those contexts, where
probability is over 90 % of being one of either type are
incorporated into the dictionary12. We experimentally
evaluated different context token sizes and a fuzzy
matching (whether a term occurs within a window
around the entity candidate), but found, that a fixed
lookbehind and ahead of one token provides the most
reliable classification results. We assume a “one sense
per discourse” (Gale et al. 1992) and thus consolidate
context classifications of identical entities within the
document.

In contrast to the first filtering pass, we make
no instant decision whether to remove the candidate
here. The rationale behind this deferred commitment
strategy is, that a distinction between location and
person type is not perfect and complicated by common
figures of speech such as metonymy. For example, for
the phrase “U.S. says Rwanda aids Congo rebels”, our
context classifier would cleary label “U.S.” as being a
person. By postponing the decision whether to drop
or to keep the candidate in question to the TD phase,
we can make use of the gazetteer information to apply
appropriate exceptions in case of prominent locations
such as countries or capitals.

The last step in the preprocessing phase is the
lookup in our gazetteer (see Section 5). For each
unique annotation value an, we query our database to
retrieve a set Ln of potential location candidates. The
TD strategies as described below take a list of all an-
notations A = {a1, . . . , an} with their corresponding
locations AL = {L1, . . . , Ln}. Then, per annotation
an, either one location candidate l ∈ Ln is selected, or
the annotation is discarded as being a “non-location”
by the TD.

11http://www.bing.com
12The context dictionary used within this work consists of 318

prefix and suffix contexts for the type “person” or “location”.

http://www.bing.com


4.2 Heuristic TD

As a first step, the heuristic eliminates unlikely an-
notations by applying the following rules: Those an-
notations, which were marked as being likely of type
“person” are removed, in case they do not have a loca-
tion candidate which is of type CONTINENT or COUNTRY,
or where the population is above a unlikelyPopulation-
Threshold.

Subsequently, the approach makes use of a concept
which we call “anchor locations”13. The underlying
idea is to first only extract those locations, where we
can guarantee high precision and use them as reference
points in a second extraction step. The mechanism
for extracting anchor locations is outlined in Figure 2.
First, we assume those locations as anchors, which
are either of type CONTINENT or COUNTRY or those
which exceed a high population count as specified
with anchorPopulationThreshold. To extract further
anchor locations, we employ the following criteria: We
create groups of locations with equal names and deter-
mine the largest distance14 between each pair in the
group. In case, the largest distance is below sameDis-
tanceThreshold (which is set to a two-digit value in
kilometers), we suppose multiple location candidates
to denote the same place15. Locations complying
to this condition and having either a population of
more than lowerPopulationThreshold, or a distinctive
name consisting of more than one token (e. g. “Santa
Catarina Federal University”) as defined by token-
Threshold are added to the set of anchor locations.
We have seen, that the probability for geo/non-geo
ambiguities strongly decreases for terms with two or
more tokens.

funct getAnchors(L) ≡
Anchors := {}
for l in L do

if type(l) ∈ {CONTINENT, COUNTRY} ∨
population(l) ≥ anchorPopulationThreshold
then Anchors ← l; fi

end
for g in groupByName(L) do

if largestDistance(g) ≤ sameDistanceThreshold
then

l := getBiggestLocation(g);
p := population(l);
t := | tokenize(name(l)) |;
if p ≥ lowerPopulationThreshold ∨
t ≥ tokenThreshold
then Anchors ← l; fi

fi
end
return Anchors.

Figure 2: Algorithm for extracting anchor locations

In case we could not determine any anchor locations
using the given strategy, we use a stepwise convergence
approach comparable to a lasso, which is increasingly
tightened. Figure 3 shows the progress, where we
continuously remove the most outlying location from
the center point of a given set. The idea is adopted

13Other approaches such as Rauch et al. (2003) or Lieberman et al.
(2010) also use the term “anchor”, their definitions are different,
however.

14All distance calculations in this work use the haversine function
(Sinnott 1984), which denotes the shortest distance between two
points on an idealized sphere with a radius of r = 6, 371 km.

15We have, for example, multiple entries for the location “Arm-
strong Atlantic State University” in our gazetteer, which is due to
the fact, that multiple facilities exist. Still, they lie close together,
so we treat the locations as one.

from Smith & Crane (2001), but we stop the conver-
gence, as soon as the maximum distance between any
pair in the remaining set is below a specified lassoDis-
tanceThreshold. We only take the locations remaining
in the set as anchors, if it contains at least two dif-
ferently named candidates. This way, we can avoid
converges into the wrong direction. In case, still no
anchor could be established, we simply select the loca-
tion with the highest population from the candidate
set as a fallback.

funct getLasso(L) ≡
Lasso ← L
while |Lasso | > 1 do

maxDistance := 0;
maxDistanceLocation := null;
midpoint = midpoint(Lasso);
for l in Lasso do

distance := distance(midpoint , l);
if distance > maxDistance

then
maxDistance := distance;
maxDistanceLocation := l; fi

end
if maxDistance < lassoDistanceThreshold

then break; fi
Lasso := Lasso \maxDistanceLocation;

end
if | groupByNames(Lasso) | ≤ 1

then return ∅;
else return Lasso; fi.

Figure 3: Algorithm for extracting lasso locations

The identified anchor locations are used as refer-
ence points in the final disambiguation phase. For all
remaining location candidates, which are not in the
set of anchor locations, we check the spatial distance
between the candidate and all anchors. Locations ei-
ther falling below a anchorDistanceThreshold or being
child of a given anchor location and exceeding a lower-
PopulationThreshold are added to the final result set.
In case multiple location candidates with the same
name fulfill the given criteria, we select the one with
the biggest population, or—in case the locations are
in a hierarchy—the deepest, i. e. the most specific one.

4.3 Machine Learning TD

The second approach is based on the findings of the
heuristic. We have experienced, that adding more
rules to further improve the approach described in Sec-
tion 4.2 becomes increasingly complicated and bears
the risk of overfitting the algorithm. We therefore
present a more flexible approach in this section using
machine learning mechanisms. It relies on a num-
ber of features and a classifier which is trained using
manually annotated and disambiguated training doc-
uments. As initally outlined, the classifier is used
to perform a binary classification for each location
candidate for an annotation. The probability value
assigned by the classifier is used to rank the location
candidates. In case the probability exceeds a specified
probabilityThreshold, we assign the highest ranked
candidate location to the annotation, elsewise we dis-
card all candidates, i. e. we discard the annotation as
“non-location”. Obviously, the probability threshold
allows to adjust the results of the approach into a
more precision- or recall-oriented direction.

Table 2 gives an overview over the multitude of
features we extract for the classification. We give a
general motivation for those features in the follow-
ing and describe selected features in more detail. The



Feature Name Type Description

Annotation Features

numCharacters num. Number of characters in name
numTokens num. Number of tokens in name
acronym bin. Name is acronym, e. g. “USA”, “U.A.E.”, etc.
stopword bin. Name is on stopword list, e. g. “Or”
caseSignature nom. Upper/lowercase signature, e. g. “Aa Aa” for “New York”
containsMarker(M) bin. Name contains marker token M, such as “city”, “mountain”, etc.

Text Features

count num. Occurrence count in text
frequency num. Count, normalized by highest occurence count

Corpus Features

unlikelyCandidate bin. Annotation was classified as being unlikely a location during preprocessing

Gazetteer Features

locationType nom. Type of location (see Table 1)
population num. Population count of location
populationMagnitude num. Order of magnitude of population
populationNorm num. Population, normalized by highest population of location candidates
hierarchyDepth num. Depth of location in topologic hierarchy
nameAmbiguity num. Occurrence count of name in gazetteer, calculated as 1 / | sameNameLocations |
leaf bin. Location has no child with same name
nameDiversity num. Diversity of alternative names for location, calculated as 1 / |namesForLocation |
geoDiversity num. Spatial distribution of locations with given name

Text and Gazetteer Features

contains(p|a|s|c|d) bin. Text contains parent/ancestor/sibling/child/descendant location as candidate
num(a|s|c|d) num. Number of ancestor/sibling/child/descendant location candidates in text
numLocIn(R) num. Number of location candidates in text within distance R
distLoc(P) num. Minimum distance to other locations with minimum population P
populationIn(R) num. Sum of population count of other locations within distance R
locSentence(R) bin. Location with maximum distance R occurs in same sentence
uniqueLocIn(R) bin. Location has a uniquely named location in maximum distance R

Legend: bin. = binary, nom. = nominal, num. = numeric feature

Table 2: Features for machine learning TD

types of features can be grouped in different categories
describing the origin from which they were extracted.
Annotation Features are directly extracted from the
candidates’ text values and describe simple string prop-
erties. The caseSignature describes the upper/lower
case combination of a candidate. The motivation
behind this feature is, that specific location types
have characteristic upper/lowercase mixtures (such
as “University of California”, “Isle of Man” which
case signature is “Aa a Aa”), whereas other capital-
ization variants such as “McDonald” or “InterCity”
(case signature “AaAa”) might indicate a non-location.
containsMarker(M) can be determined for a prede-
fined set of indicative tokens, which give a strong
clue that the current candidate is a location, such as
“city”, “river”, “mountain”, “university” etc. Text Fea-
tures are extracted by regarding the whole document’s
text. count and frequency denote, how often an an-
notation occurs within the text. The Corpus Feature
unlikelyCandidate is determined using the contexts
as described in Section 4.1. Gazetteer Features are
retrieved from the location database. We incorporate
the locationType so that the classifier can potentially
adjust its decisions to different types of locations. The
nameAmbiguity signifies the number of locations with
the respective name in the database; the more loca-
tions exist, the bigger the chance for misclassifications.
geoDiversity follows a similar motivation, but here
we measure, how widespread locations with identical
names are spatially; we consider the chance for a mis-
classification higher, in case potential candidates are
scattered throughout the whole world. In contrast, the
risk should be smaller, in case the potential candidates
are close to each other. Text and Gazetteer Features
combine properties from the text with properties from
the database. The contains feature signifies, whether

location candidates with a specific topologic relation
such as “parent”, “ancestor”, etc. occur within the
text. The num feature gives the counts of topologically
related location candidates. Thus, we can indicate
that a specific location is disambiguated through a
superior instance within the text, such as “Houston,
Texas”, or we have an enumeration pattern with loca-
tions of similar types, such as in “Stuttgart, Frankfurt,
Munich”. The remaining features describe spatial
proximities to other candidates and thus exploit the
fact, that usually, spatially related locations occur to-
gether. For example, numLocIn(R) signifies the num-
ber of location candidates within a maximum distance
R to the considered location candidate occurring in the
text. Note, that some of the employed features can be
parametrized and thus replicated and evaluated with
different configurations, which we will discuss within
Section 6.

To train our classifier, we depend on manually an-
notated and disambiguated training documents, such
as the TUD-Loc-2013 as presented in Section 3. We
also use the classifier to detect non-locations, this
means, that all toponyms in the texts must be anno-
tated, as the non-annotated entities are considered
negative examples for training. Figure 4 shows the
training process. First, the annotated training doc-
uments are split into their original text and a set of
annotations. We then extract potential location candi-
dates using the mechanisms as described in Section 4.1.
In a first step, we extract annotation, text and cor-
pus specific features. For each toponym candidate
we perform a gazetteer lookup to retrieve potential
location candidates and add gazetteer specific features.
The combination of location candidate extracted from
text, its features and the location information from
the gazetteer forms an instance for the classifier. Each
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Figure 4: Training process of the machine learning-
based approach

instance is checked against the manually assigned lo-
cation annotations from the training data. We mark
those instances as positive samples, which have a cor-
responding location of same type, same name and a
small distance. The remaining instances are marked
as negative samples for training.

We make no limitations on the actual classification
algorithm, as long as it supports numeric and nominal
input features and provides a probability value with
its classification output. Our implementation relies
on a Bagging classifier (Breiman 1996) which creates
multiple decision trees using bootstrap sampling of
the training data. The classification is carried out by
letting all decision trees vote and taking the portion
of each result class as its probability. Bagging decision
trees avoids the problem of overfitting and improves
classification accuracy compared to a single tree.

The learned model can then be used for classifica-
tion. The preprocessing and feature extraction steps
are identical to those employed during the training
phase. All instances are classified, resulting in proba-
bility value of being the correct location. Annotations,
where all candidates’ probability values are below a
probabilityThreshold are discarded as “non-locations”,
for annotations where the threshold is exceeded, the
candidate with the highest probability is taken as
result.

4.4 Postprocessing

The postprocessing phase, which is carried out for the
heuristic and the machine learning method as well,
extracts location types which we do not cover through
our gazetteer (yet): STREET, STREETNR, and ZIP. Our
current approach is very rudimentary and involves
great potential for future improvements. We start by
extracting street names using a set of prefix and suffix
rules (such as “*street”, “*road”, “rue *”, etc.). We
then try to match street numbers occurring before or
after those street names. Similarly, we proceed for
ZIP codes, which are searched right before or after
location entities marked as CITY. A disambiguation of
entities of the three types is not carried out currently.

5 Gazetteer

Our gazetteer has been aggregated from different
sources and currently consists of circa 9.2 million loca-
tions. While other approaches employ only compara-
tively small gazetteer databases, our aim is to achieve
a high recall from our gazetteer and guarantee preci-
sion through our algorithms. For each entry, we keep
the following information: unique identifier, primary
name, alternative names (a list of alternative names
for the location, optionally including a language), a
type (see Figure 1), latitude and longitude coordinates,
population count if applicable and the topologic hier-
archy (expressing the list of parent locations within
the database, such as “Federal Republic of Germany
→ Europe → Earth”).

While the major portion (8.5 million entries) of
our data comes from GeoNames, we have further en-
riched our database from the following sources: The
dataset from HotelsBase16 provides about 500,000 ho-
tels, protectedplanet.net17 contributes about 200,000
protected areas.

To further complement our database, we extract
locations from the English Wikipedia18. Using the
Palladian toolkit’s MediaWiki parser (Urbansky et al.
2012), we are able to extract 500,000 entries. Similar
to universal information extraction approaches such
as DBPedia19, we therefore rely on so called infoboxes
(see Figure 5), table-like templates which are used to
describe entities of different types in a standardized
manner. We use a manually created mapping between
infobox types and our own location types to filter
relevant pages (for example, the infobox in Figure 5
is of type protected area, which is mapped to the
type POI in our schema) and add those pages to our
database, which provide geographic coordinates.

As a further step, we tried to exploit Wikipedia-
internal redirects to obtain alternative names for the
extracted locations (for example, when trying to ac-
cess the Wikipedia article “Alcatraz”, one is redirected
to “Alcatraz Island”). However, we came to the con-
clusion, that often very obscure redirects exist, which
are not in general language use and therefore degrade
the quality of our database. As an alternative for
future improvement, we suggest to only extract those
alternative names, which are explicitly mentioned and
highlighted in an article’s introduction.

As we perform no explicit deduplication, we have
no exact figures on how many previously unknown lo-
cations we actually retrieve through the additional
sources to GeoNames, but in our experiments we
achieved a noticable recognition improvement. Our

16http://www.hotelsbase.org
17http://protectedplanet.net
18http://en.wikipedia.org/wiki/Main_Page
19http://dbpedia.org/About

http://www.hotelsbase.org
http://protectedplanet.net
http://en.wikipedia.org/wiki/Main_Page
http://dbpedia.org/About


Figure 5: Infobox on the English Wikipedia article
“Alcatraz Island” providing geographic coordinates

extraction mechanisms can cope with semantically
duplicated location data, so eliminating them is not
important for us, but could be achieved using record
linkage strategies.

6 Experiments

In this section, we will present our findings during
the optimization of both presented approaches. The
heuristic approach (see Section 4.2) can be fine-tuned
using the presented threshold values. For the machine
learning approach (see Section 4.3), we presented a set
of features which can be used for the classifier. How-
ever, not all of those features might be necessary or
useful, therefore we are presenting a backward feature
elimination to narrow down our full feature set to a
reduced necessary subset. We use QuickDT20 with
its Bagging implementation for the machine learning-
based approach.

We use precisio, recall, and F1 measure as harmonic
mean in the evaluation. First, we evaluate the TR and
classification results following the “MUC” evaluation
scheme (two dimensional evaluation with separate
scoring for correct type and correct boundaries, giving
one point for each, and two points in case both were
identified correctly). For the TD, we evaluate the
spatial distance between the location given in the
dataset and the location given by the extractor and
assume a correct disambiguation in case the distance is
below 100 km. In the following, we also give precision,
recall and F1, denoted as “Geo”. We do not use
a scoring based on actual distances’ values such as
RMSE21, as this would pose a disadvantage to other
approaches using different gazetteer data which will
be compared in Section 7. The TD is only evaluated
for locations of the types CITY and POI, as the shapes
of other locations are generally to broad to perform a
point-based matching.

6.1 Parameter Optimization for Heuristic
TD

The presented heuristic was developed using the train-
ing set of TUD-Loc-2013 (see Section 3). The heuristic
is based on seven threshold values which were selected
intuitively at first. Consecutively, we will examine the
impact on the extraction results when varying each of
those threshold values, while keeping the rest of the
values to the initial default value as given in Table 3.
The analysis is performed on the validation set.

20https://github.com/sanity/quickdt
21Root-mean-square error
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Figure 6: Influence of selected threshold settings on
extraction performance of the heuristic approach

The results of our analysis show, that only the
variation of anchorDistanceThreshold and anchorPop-
ulationThreshold have a noticable influence on the
extaction results. The value of 2 for the tokenThresh-
olds gives best results, values above/below yield a
lower F1 measures. A variation of the remaining pa-
rameters has no significant influence, which indicates
on the other side, that our approach does not overfit to
the given data and generalizes well. While we had ini-
tially planned to use more sophisticated optimization
mechanisms, such as genetic algorithms, for parameter
tuning, the results clearly indicate, that this is not
necessary.

As Figure 6 shows, the given default values already
provide good results in terms of F1 measure, while
the anchorDistanceThreshold allows for a further ad-
justment towards more precision or recall. Intuitively,
the lower the distance threshold between anchor loca-
tions and potential further candidates, the higher the
precision. Increasing this threshold allows the recall
to rise, however, this results in a comparatively strong
decrease of precision.

6.2 Feature Elimination for Machine Learn-
ing TD

In Table 2, we describe various features which
we use for classification. In total, we extracted
70 features. We used 24 tokens for extract-
ing the binary containsMarker(M) feature such as
“city”, “river”, “county”, etc. For the features
numLocIn(R), populationIn(R), locSentence(R),
uniqueLocIn(R), which are to be parametrized with
a distance R, we used values of 10, 50, 100, and 250 km
for each. The feature distLoc(P) was extracted for
values of 1,000, 10,000, 100,000, and 1,000,000 for P.
Figure 7 shows the results of the backward feature
elimination. The process is as follows: We start with
the complete feature set. In each iteration, we remove
each of the remaining features once and train the clas-
sifier using the training set and test the classifier using
the validation set (see Section 3). This means, we ran
n(n + 1) / 2 = 2485 train/test cycles. We evaluate
the classification results using the F1 measure (note,

Threshold Value

unlikelyPopulationThreshold 100,000
anchorPopulationThreshold 1,000,000
sameDistanceThreshold 50 km
lowerPopulationThreshold 5,000
tokenThreshold 2
lassoDistanceThreshold 100 km
anchorDistanceThreshold 100 km

Table 3: Default threshold values for heuristic TD

https://github.com/sanity/quickdt


that we only evaluated the binary classification per-
formance, and did not employ the MUC or Geo F1
measure). After each iteration, we finally remove the
feature, where elimination achieved the best results
in F1. This means, that with each step to the right
on the x-axis in Figure 7, the mentioned feature was
removed in addition to the features on the left.

While the results of the backward feature elimina-
tion give no direct evidence of how strong or weak a
feature is (for that, chi-squared or information gain
tests should be employed), our results show, that we
can remove a significant amount of features without
harming the classification quality. In contrast—the
values indicate, that F1 slightly improves, beginning in
the last third of the elimination phase. The oscillation
of the results is due to statistical properties and could
be eliminated through cross validation, however, we
wanted to stick to the predefined training/validation
set for better reproducibility.

The results of the feature elimination show, that
we can build a robust classifier for TD using a
comparatively small feature set. For our follow-
ing comparison, we rely on a set of the top 15
features, starting on the right of Figure 7. It
is interesting to observe, that intuitive indicators,
which we already employed in our heuristic, such
as populationNorm or nameAmbiguity are among
the leading features. Also, spatial proximity-based
features such as populationIn(R), uniqueLocIn(R),
locSentence(R), as well as the features num(c) and
contains(c), based on topologic relations, are among
the top 15.

A further question is, how to set the probability
threshold, above which candidates are classified as
locations. Figure 8 shows the evaluation measures
with an increasing probability threshold. Intuitively,
a lower threshold classifies more candidates as be-
ing locations, resulting in high recall, whereas higher
threshold values achieve better precision. The best
F1 measure is achieved for a probability threshold of
0.2, whereas higher thresholds lead to decreasing F1
values due to the high loss of recall.

Threshold Pr-Exact Rc-Exact F1-Exact Pr-MUC Rc-MUC F1-MUC Pr-Geo Rc-Geo F1-Geo
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0,730458221 0,7048114434 0,7174056916 0,7843665768 0,7568270481 0,7703507611 0,8261455526 0,8328804348 0,8294993234
0,7610241821 0,6957087126 0,7269021739 0,8172119488 0,7470741222 0,7805706522 0,8605974395 0,8175675676 0,8385308385
0,7794117647 0,689206762 0,7315389924 0,8360294118 0,7392717815 0,784679089 0,8794117647 0,8059299191 0,841068917
0,8009259259 0,6749024707 0,7325335215 0,8541666667 0,7197659298 0,7812279464 0,8935185185 0,7782258065 0,8318965517
0,821603928 0,6527958388 0,7275362319 0,8715220949 0,6924577373 0,7717391304 0,9083469722 0,7429718876 0,8173784978

0,8509874327 0,6163849155 0,7149321267 0,8904847397 0,644993498 0,7481146305 0,9156193896 0,6827309237 0,782208589
0,8843813387 0,566970091 0,6909667195 0,9148073022 0,5864759428 0,7147385103 0,9330628803 0,6084656085 0,7365892714
0,9152119701 0,477243173 0,6273504274 0,9301745636 0,4850455137 0,6376068376 0,9326683292 0,4921052632 0,6442721792
0,915942029 0,410923277 0,5673249551 0,9304347826 0,4174252276 0,5763016158 0,9333333333 0,4220183486 0,5812274368
0,947761194 0,3302990897 0,4898746384 0,9514925373 0,3315994798 0,4918032787 0,9514925373 0,332464146 0,4927536232

0,9590643275 0,2132639792 0,3489361702 0,9649122807 0,2145643693 0,3510638298 0,9649122807 0,21484375 0,3514376997
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Figure 8: Results of the threshold analysis

7 Comparison

We evaluate our two approaches using TUD-Loc-2013
and the methods already described in Section 6 and
compare them to publicly available state of the art
approaches for location extraction. In particular, we
consider the following Web-based APIs: Yahoo! BOSS

GeoServices22, Unlock Text23, OpenCalais24, Alche-
myAPI25, and Extractiv26. While all of the mentioned
services perform a TR, only Yahoo and Unlock provide
a full TD by returning geographical coordinates with
each extracted location. OpenCalais, and Extractiv
at least retured coordinates for some of the extracted
toponyms, while AlchemyAPI does not deliver any
coordinates at all.

Naturally, each of the service relies on its own set
of location types. We therefore perform a mapping to
the location types used in the dataset (see Table 1).
The mapping was evaluated and optimized in advance
using the training set to ensure a fair comparison.

Unlock is the only service which does not categorize
the extracted locations, which is why we exclude it
from the TR evaluation.

We compare the results to a baseline TD approach,
using a “maximum population” heuristic, which either
disambiguates candidates by taking the CONTINENT or
COUNTRY locations, if such exist, or selects the location
with the highest population count. The preprocessing
and postprocessing phases are identical to the ones
described in Section 4.1 and 4.4.

Figure 9 shows the comparison between the base-
line, our approaches and state of the art services for the
TR task. It is noteworthy, that the baseline already
gives comparatively good results and even beats Ya-
hoo in F1, which is due to the strong recall. Alchemy,
OpenCalais and Extractiv perform considerably better,
but are still outperformed, both by the heuristic and
the machine learning TD method. Through machine
learning, we can improve F1 to 77,09 % compared to
the 76,02 % achieved via the heuristic approach. The
runner-up Alchemy achieved 74,12 % F1.

While the previous comparison evaluated the ac-
curacy of the TR, i. e. the correct identification and
classification of location entities in text, the TD eval-
uation investigates, how well the different approaches
identify the correct geographical locations (see Fig-
ure 10). In contrast to the comparison above, we
do not consider Alchemy, OpenCalais and Extractiv
here, as they do not provide coordinates for most
extractions. On the other hand, we add Unlock to
the comparison, which does not categorize extracted
locations, but provides coordinates for all of them.

Even more than in the TR comparison, we can see
that the baseline already performs considerably well
and outperforms Yahoo and Unlock. Yahoo provides a
high precision for the TR, but suffers from the compar-
atively poor results achieved during TD. In contrast

22http://developer.yahoo.com/boss/geo/
23http://unlock.edina.ac.uk/home/
24http://www.opencalais.com/documentation/calais-web-

service-api/api-metadata/entity-index-and-definitions
25http://www.alchemyapi.com/api/entity/
26http://extractiv.com
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Figure 9: Comparison of TR on TUD-Loc-2013
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Eliminated Feature Count F1
num(a) 1 0,78777589
containsMarker(route) 2 0,7804878
stopword 3 0,77835951
containsMarker(province) 4 0,79166667
frequency 5 0,78424658
uniqueLocIn(50) 6 0,78819444
containsMarker(mountain) 7 0,78829604
contains(p) 8 0,78797997
unlikelyCandidate 9 0,78082192
locSentence(250) 10 0,78716216
locSentence(100) 11 0,79581152
populationIn(100) 12 0,78319328
contains(d) 13 0,77913043
numLocIn(100) 14 0,78716216
populationIn(50) 15 0,79310345
uniqueLocIn(10) 16 0,7826087
locSentence(10) 17 0,79381443
num(s) 18 0,78705281
distLoc(10k) 19 0,78169014
geoDiversity 20 0,77948718
distLoc(1k) 21 0,78156997
num(d) 22 0,77954145
distLoc(100k) 23 0,78877888
containsMarker(creek) 24 0,79131886
population 25 0,791019
leaf 26 0,79801325
containsMarker(canton) 27 0,79251701
containsMarker(formation) 28 0,78829604
numLocIn(250) 29 0,7915937
numLocIn(10) 30 0,78965517
hierarchyDepth 31 0,79456706
containsMarker(district) 32 0,78535774
numLocIn(50) 33 0,79012346
caseSignature 34 0,78231293
uniqueLocIn(250) 35 0,79666667
numCharacters 36 0,78216123
containsMarker(state) 37 0,80887372
contains(s) 38 0,7852349
count 39 0,79094077
containsMarker(river) 40 0,78991597
containsMarker(township) 41 0,80139373
numTokens 42 0,79264214
containsMarker(lake) 43 0,79932546
containsMarker(mount) 44 0,8034188
containsMarker(hill) 45 0,79376083
populationIn(250) 46 0,7965812
populationMagnitude 47 0,81895093
contains(a) 48 0,80336134
containsMarker(city) 49 0,81456954
containsMarker(island) 50 0,79931973
containsMarker(falls) 51 0,79933665
containsMarker(olya) 52 0,79867987
containsMarker(road) 53 0,80336134
distLoc(1m) 54 0,80201342
containsMarker(gmina) 55 0,80066445
containsMarker(park) 56 0,80536913
num(c) 57 0,80541455
contains(c) 58 8E-01
locSentence(50) 59 0,81383855
acronym 60 0,79470199
containsMarker(highway) 61 0,80068143
containsMarker(peak) 62 0,79796265
uniqueLocIn(100) 63 0,78956522
containsMarker(county) 64 0,77739726
populationIn(10) 65 0,77474403
containsMarker(municipality) 66 0,77474403
locationType 67 0,74516696
nameAmbiguity 68 0,72693727
populationNorm 69 0,69548872
nameDiversity 70 -1,0
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Figure 7: Results of the backward feature elimination
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Figure 10: Comparison of TD on TUD-Loc-2013

to the results above, the machine learning-based ap-
proach falls short with 69,79 % F1 in comparison to
the heuristic, which achieves an F1 value of 72,32 %.

8 Conclusions and Future Work

In this paper we have presented a new dataset for
evaluating TR and TD approaches. TUD-Loc-2013 is
publicly available for research purposes on the open
research platform Areca and therefore facilitates the
comparison of future approaches with the results pre-
sented here. We have presented two new methods for
TR and TR in detail, one relying on a set of heuris-
tics, the other using a classifier trained with machine
learning. We have described a comprehensive set of
features and seen, that a small subset of those features
is sufficient for a well-performing classification-based
method.

We have described an aggregated gazetteer
database that improves extraction results. Incorpo-
rating further sources for obtaining street and ZIP
information might further improve those results, but
also possibly introduce inaccurate information. An
alternative approach might try to exploit map APIs
such as Bing or Google when necessary.

On the other hand, the recall achieved during TR
can be further improved by extracting more location
entities not found in the database. Currently, our
approach only allows extraction of address-specific
information not in the gazetteer, such as ZIP codes,
street names and numbers. We have seen, that cur-
rently, the heuristic and machine learning approach
deliver a neck-and-neck race, with each one winning
either the TR and the TD competition.

In our comparison we have shown, that we can
outperform other publicly available Web APIs for
extracting location data, using both—heuristic and
machine learning—approaches. Thus, we provide a
strong foundation for improving current and future
applications relying on location-specific data, such
as search, geo-targeted advertising, data mining and
anlysis, and many more.

Beside the presented dataset TUD-Loc-2013, the
methods described within this paper are available as
ready-to-use implementations in the Java-based infor-
mation retrieval toolkit Palladian27, which is freely
available for non-commercial, scientific applications
(Urbansky et al. 2012).
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